
Analytical solution of the finite quantum square-well problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 L673

(http://iopscience.iop.org/0305-4470/38/42/L02)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 04:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/42
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) L673–L678 doi:10.1088/0305-4470/38/42/L02

LETTER TO THE EDITOR

Analytical solution of the finite quantum square-well
problem

R Blümel
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Abstract
The bounded positive- and negative-parity spectrum E(±)

n of the symmetric,
one-dimensional, finite quantum square-well potential is computed exactly,
explicitly and analytically in the form E(±)

n = f (±)(n), where f (±) are known
functions.

PACS number: 03.65.Ge

The finite square well is treated in all standard textbooks on introductory quantum mechanics
(see, e.g. [1–8]). It is used as a simple ‘model of departure’ in many areas of physics. In
atomic and molecular physics, it may be used as a model of an electron moving in the mean
field of a linear molecule such as acetylene (H–C≡C–H) [2]. It also arises as the l = 0 partial
wave radial equation for a spherically symmetric, finite square-well potential [1–7]. In nuclear
physics, it is used as a simple model of the deuteron [7]. In solid-state physics, it is used to
describe electrons bound to a thin sheet of conducting material [2]. The finite square well
is also an excellent model for the computation of the resonance spectrum of flat microwave
cavities loaded with dielectric inserts which were used recently to verify the existence of a
ray-splitting correction to the Weyl formula [9].

Despite its importance in research and education, none of the textbooks states the analytical
solution of the bounded spectrum of the one-dimensional square well. True, the spectral
equation of the one-dimensional quantum square-well problem is a transcendental equation
[2, 3]. This, however, does not preclude its explicit, analytical solution. Indeed, explicit
solutions of the finite square-well problem were published by Siewert [10], Aronstein and
Stroud [11], and Paul and Nkemzi [12].

Aronstein and Stroud [11] solved the spectral equation of the finite square well by a
method known as reversion of series [13]. However, although an explicit formula for the
general term of a reversed series exists [13], applying it to the series of Aronstein and Stroud is
cumbersome. Accordingly, Aronstein and Stroud state only the first few terms of their series
expansions explicitly.

Based on the work of Siewert [10], Paul and Nkemzi [12] cast the square-well problem into
the form of a Riemann boundary problem [14] and arrive at an explicit integral representation
of the bound-state energies of the finite square well. In principle, this representation can be
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used as the starting point of a systematic integral-free series representation, but only the first
few terms were computed by Paul and Nkemzi [12]. An error in this expansion was corrected
by Aronstein and Stroud [15].

The purpose of this letter is to present an integral-free, explicit solution of the one-
dimensional, finite square-well potential in which all the terms in the series expansions are
stated explicitly. Only elementary mathematics is used.

Starting point is the stationary Schrödinger equation for a quantum particle of mass m in
the symmetric, finite, one-dimensional square-well potential [1–7]

− h̄2

2m
ψ ′′(x) + V (x)ψ(x) = Eψ(x), (1)

where

V (x) =
{

0, for |x| < a,

V0, for |x| � a,
(2)

and V0 > 0, 2a > 0 are the depth and width of the potential, respectively. The continuous
spectrum E > V0 of (1) is trivial [1–7]. We will not consider it any further in this letter.
Instead we focus on the computation of explicit expressions for the bounded states of (1).
Defining ξ = ka, k =

√
2mE/h̄2, v0 =

√
2ma2V0/h̄

2, the spectral equation for the bound
states is

tan(ξ) = pξ−p
[
v2

0 − ξ 2
]p/2

, (3)

where p = +1 for the even solutions of (1) (ψ(−x) = ψ(x), positive-parity states) and
p = −1 for the odd solutions of (1) (ψ(−x) = −ψ(x), negative-parity states). The total
number of negative- and positive-parity bound states, respectively, is given by

N
(p)

B =




⌊
1

2
+

v0

π

⌋
, for p = −1,⌊v0

π

⌋
+ 1, for p = +1,

(4)

where �x� is the floor function defined here as the largest integer smaller than x. Examples:
�2.37� = 2; �2� = 1.

In the following, we focus on the negative-parity spectrum to outline the method of
solution of (3). From (3), we obtain the singularity-free spectral equation for negative-parity
states: √

v2
0 − ξ 2 sin(ξ) + ξ cos(ξ) = 0. (5)

The positive roots of (5) suffice to compute the negative-parity bound-state spectrum of (1).
We denote them by ξ (−)

n , n = 1, 2, . . . , N
(−)
B . The nth root ξ (−)

n , and only ξ (−)
n , is found in the

root interval
[
(n − 1/2)π, b(−)

n

]
, where

b(−)
n =

{
nπ, if v0 � nπ,

v0, if v0 < nπ.
(6)

Defining

g(−)(ξ) = ξ + arcsin(ξ/v0), (7)

equation (5) can be written in the equivalent form sin(g(−)(ξ)) = 0, from which we obtain the
defining equation for ξ (−)

n [8, 16]

g(−)(ξ) = nπ, n = 1, 2, . . . , N
(−)
B . (8)
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For given n, this equation has only a single root, namely ξ (−)
n . Equation (8) is the key for

computing the roots ξ (−)
n explicitly.

First we define the staircase function

�(−)(ξ) = −1

2
+

ξ

π
+

1

π

∞∑
m=1

sin(2mξ)

m
, (9)

which jumps by one unit whenever its argument ξ crosses a multiple of π . Then we define the
function

N (−)(ξ) =
N

(−)
B∑

n=1

θ
(
ξ − ξ (−)

n

)
, (10)

where θ(x) = 0 for x < 0, θ(x) = 1
2 for x = 0, and θ(x) = 1 for x > 0. The function

N (−)(ξ) counts the number of roots ξ (−)
n of (5) smaller than ξ .

Since a root ξ (−)
n is encountered whenever g(−)(ξ) crosses a multiple of π , and since

�(−)(ξ) increases by one unit whenever its argument crosses a multiple of π , we can express
the counting function N (−)(ξ) explicitly with the help of �(−)(ξ) according to

N (−)(ξ) = �(−)(g(−)(ξ))

= −1

2
+

ξ

π
+

1

π
arcsin

(
ξ

v0

)
+

1

π

∞∑
m=1

sin[2mξ + 2m arcsin(ξ/v0)]

m
. (11)

Integrating N (−)(ξ) over the nth root interval, we obtain∫ b
(−)
n

(n−1/2)π

N (−)(ξ) dξ = (n − 1)
[
ξ (−)
n − (n − 1/2)π

]
+ n

[
b(−)

n − ξ (−)
n

]
. (12)

This expression can be solved for ξ (−)
n resulting in the following closed-form solution for ξ (−)

n :

ξ (−)
n = nb(−)

n − (n − 1)(n − 1/2)π −
∫ b

(−)
n

(n−1/2)π

�(−)(ξ + arcsin(ξ/v0)) dξ. (13)

No knowledge of ξ (−)
n is needed to evaluate the right-hand side. Since all quantities on the

right-hand side of (13) are known, (13) is an explicit solution of (5).
Using (11), we obtain the following explicit, exact, integral-free series solution for ξ (−)

n :

ξ (−)
n = − b(−)

n

2

2π
+

(
n +

1

2

)
b(−)

n − π

2

(
n− 1

2

)2

− v0

π

[
ϕ(−)

(
b(−)

n

/
v0

) − ϕ(−)(π(n− 1/2)/v0)
]

− v0

π

∞∑
m=1

1

m

[
Fm

(
2mv0; b(−)

n

/
v0

) − Fm(2mv0;π(n − 1/2)/v0)
]
, (14)

where

ϕ(−)(ξ) =
∫

arcsin(ξ) dξ = ξ arcsin(ξ) +
√

1 − ξ 2 (15)

and

Fm(z; ξ) =
∫

sin[zξ + 2m arcsin(ξ)] dξ

= −1

2

∞∑
q=−∞

Jq(z)
∑

µ=±1

′ cos[(2m + µ + q) arcsin(ξ)]

2m + µ + q
. (16)
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The prime on the summation symbol indicates that singular terms are not included in the sum.
Jq(z) are Bessel functions of the first kind [17]. The Bessel function series in (16) is essentially
finite, since the Bessel functions cut off at |q| ≈ |z|, i.e. the Bessel functions drop to zero
faster than exponentially for |q| > |z| [17]. Thus the convergence of (16) is guaranteed.

With the help of a partial integration, it is possible to show analytically that |Fm(2mv0; b)−
Fm(2mv0; a)| � h(v0, a, b)/m, where 0 � a, b � 1 and h(v0, a, b) > 0. Since the sum in
(14) involves one additional factor of 1/m, the sum in (14) converges absolutely.

Defining ξ
(−)
n,M as the result obtained by including only the first M terms in the sum over

m in (14), we can prove analytically that
∣∣ξ (−)

n,M − ξ (−)
n

∣∣ � C(−)
n (v0)

/
M , where C(−)

n (v0) is a
positive constant. This result is a consequence of |Fm(2mv0; b) − Fm(2mv0; a)| ∼ 1/m. It
shows that ξ

(−)
n,M → ξ (−)

n for M → ∞. Numerical calculations indicate that the convergence
of (14) is faster than suggested by the analytical result. In the cases we checked, we find∣∣ξ (−)

n,M − ξ (−)
n

∣∣ ∼ 1
/
M2, i.e. quadratic convergence. If true in general, it may be possible

to improve the analytical estimate
∣∣ξ (−)

n,M − ξ (−)
n

∣∣ � C(−)
n (v0)

/
M . However, this estimate is

all we need in the context of this letter to prove that (14) converges. We mention that the
numerical results do not invalidate the analytical estimate. In fact, the estimate

∣∣ξ (−)
n,M −ξ (−)

n

∣∣ �
C(−)

n (v0)
/
M certainly covers a possibly faster convergence ∼1/M2.

With
∑∞

m=1 1/(2m− 1)2 = π2/8 [17], it can be shown analytically that according to (14)
ξ (−)
n → nπ for v0 → ∞. This is the correct result for the negative-parity solutions of the

infinite square well and shows that (14) has the correct large-v0 limit.
Derivation of (14) involves interchanging integration and summation in (13). We justify it

in the following way. The series representation (11) of �(−)(ξ +arcsin(ξ/v0)) = �(−)(g(−)(ξ))

in (13) converges uniformly in
[
(n − 1/2)π, ξ (−)

n − ε
]

and
[
ξ (−)
n + ε, b(−)

n

]
, where ε <

min
{
b(−)

n −ξ (−)
n , ξ (−)

n −(n−1/2)π
}
. In this case there is no problem interchanging integration

and summation [18]. A problem may occur only in
[
ξ (−)
n − ε, ξ (−)

n + ε
]
, where �(−)(g(−)(ξ))

jumps by one unit and is therefore not uniformly convergent. But since we can make ε as
small as we like, and since g(−)(ξ) is a strictly monotonic function (dg(−)(ξ)/dξ > 0 for all
ξ ), we can linearize g(−)(ξ) in

[
ξ (−)
n − ε, ξ (−)

n + ε
]
, which turns the series representation (11)

of �(−)(g(−)(ξ)) into an ordinary Fourier sum. According to a theorem in [18] (appendix
to chapter IX, pp 455–6), interchanging of integration and summation is always allowed
for Fourier sums as long as the sum converges to a piecewise continuous function. Since
�(−)(g(−)(ξ)) = N (−)(ξ) is piecewise constant, and therefore certainly piecewise continuous,
the condition is fulfilled, the interchange is allowed and the proof is complete.

We now turn to the positive-parity states. From (3), we obtain the singularity-free spectral
equation for the positive-parity states√

v2
0 − ξ 2 cos(ξ) − ξ sin(ξ) = 0. (17)

Defining

g(+)ξ = ξ − arccos(ξ/v0), (18)

the spectral equation (17) can be written in the equivalent form sin(g(+)(ξ)) = 0, from which
we obtain the defining equation [8, 16]

g(+)(ξ) = nπ, n = 0, 1, . . . , N
(+)
B − 1 (19)

for the roots ξ (+)
n of (17). The root ξ (+)

n , and only ξ (+)
n , is found in the root interval

[
nπ, b(+)

n

]
,

where

b(+)
n =

{
(n + 1/2)π, if v0 � (n + 1/2)π,

v0, if v0 < (n + 1/2)π.
(20)
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Defining the functions

ϕ(+)(ξ) =
∫

arccos(ξ) dξ = ξ arccos(ξ) −
√

1 − ξ 2, (21)

Kµ(q,m; ξ) =




ξ, if q − 2m + µ = 0,

ei[q−2m+µ]ξ

i[q − 2m + µ]
, if q − 2m + µ 	= 0,

(22)

and

Gm(z, ξ) =
∫

sin[zξ − 2m arccos(ξ)] dξ

= −1

2
Im

∞∑
q=−∞

iq−1Jq(z)
∑

µ=±1

µKµ(q,m; arccos(ξ)), (23)

we obtain

ξ (+)
n = −b(+)

n

2

2π
+

(
n +

1

2

)
b(+)

n − π

2
n(n − 1) +

v0

π

[
ϕ(+)

(
b(+)

n

/
v0

) − ϕ(+)(nπ/v0)
]

− v0

π

∞∑
m=1

1

m

[
Gm

(
2mv0, b

(+)
n

/
v0

) − Gm(2mv0; nπ/v0)
]
. (24)

The convergence properties of ξ (+)
n in (24) are the same as those of ξ (−)

n in (14). In analogy to
the negative-parity case, it can be shown analytically that in the limit of v0 → ∞ (24) predicts
ξ (+)
n → (n + 1/2)π , the correct result for the positive-parity states of an infinite square well.

Since E(±)
n = h̄2ξ (±)

n

2/
(2ma2), formulae (14) and (24) accomplish the goal of computing

the bound spectrum of the symmetric, finite square well explicitly in the form E(±)
n = f (±)(n),

where f (±) are known functions.
The solution method presented in this letter is based on a method first used in [19, 20]

for the solution of a class of scaling quantum graphs [19–23]. Only above-barrier spectra are
computed in [19–21]. Below-barrier spectra were recently computed for a scaling [24] and
a nonscaling [25] step potential inside a box with infinitely high walls [19–21]. The results
obtained in [24, 25] are not integral-free. Moreover it can be shown [26] that the methods used
in [25] may lead to divergent results. Thus the solution of the square-well problem presented
in this letter is the first time that a modified, convergent version of the algorithm of [19–21] is
applied to a nonscaling potential with tunnelling and yields integral-free results. This step is
significant, since it opens up the possibility of solving explicitly all quantum graphs, scaling
or nonscaling, with or without tunnelling.

The solution method presented in this letter is not meant to provide the eigenvalues of
the finite square-well potential with greater computational speed. It is an intellectual advance
since it shows that the eigenvalues can be computed integral-free, analytically and explicitly
in the form E(±)

n = f (±)(n), where f (±) are the same functions for all n. This is surprising
since the spectral equations (8) and (19) of the finite square-well potential are transcendental
equations.

The method in [19–21] is based on the scattering matrix [22, 23]; the method in this letter
is based entirely on the spectral equation. This feature has two advantages. (i) It makes the
method more straightforward to use and (ii) it can be applied conveniently to a wide class
of scaling and nonscaling potentials, with or without tunnelling, as soon as their spectral
equations are known. This is a particularly appealing feature since for many potentials the
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spectral equation is known, but hard, or impossible, to solve explicitly with existing analytical
tools. Here the method presented in this letter makes a difference.

In this letter, we presented an exact, explicit and analytical solution of the bound-state
spectrum of the symmetric, one-dimensional, finite quantum square-well potential. The
solutions (14) and (24) are characterized by the following features: (i) Only elementary
mathematical methods (including Fourier series and Bessel functions) are used in their
derivation, (ii) they are integral-free, (iii) all terms in the series expansions are stated explicitly
and (iv) all series converge absolutely.

The method generalizes naturally to other types of one-dimensional potentials. Examples
are quantum graphs [19–23], the δ-in-the-box potential [27], and piecewise constant potentials.
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[26] Blümel R 2005 Eur. J. Phys. submitted
[27] Lapidus I R 1987 Am. J. Phys. 55 172


	Acknowledgments
	References

